
6.2 Weighting data

(i) For Gaussian error distributions, the sum of squares, weighted by the population vari-
ances, turns up naturally in maximum likelihood estimation. Since maximum likelihood
has the various good properties listed in the Chapter, we could reasonably describe this
as the “optimum” weighting.
A large class of error distributions is of the form

f

(

x− µ

β

)

where µ is a location parameter and β is a scale parameter. Clearly a maximum-likelihood
attack will yield a product of error terms weighted by the relevant 1/β, in some way which
depends on the form of f . For instance, for an exponential distribution, the weight is just
1/β. It is easy to see (from the definition of variance) that the variance of the distribution
f must be proportional to β2. So in an exponential error distribution the weight goes
inversely with the standard deviation and not with the variance.
(i) If the errors are not known to be Gaussian, another approach is possible. We can
do something with linear estimators; that is, we assume that our parameter α can be
estimated by a linear function of the data Xi, as follows:

α̂ =
∑

i

wiXi

where the wi are the weights we want. Taking another meaning of “optimum” we would
like this weighting to minimize the variance in our estimator,

var[α̂] =
∑

i

w2

i
var[Xi]

so that, using δ to denote a small variation

0 =
∑

i

wi δwivar[Xi].

Also, we have the constraint that the weights should be normalized,
∑

i wi = 1, so that

0 =
∑

i

δwi.

These two variational equations can be solved by the standard method of Lagrange mul-
tipliers, yielding the result

wi =

(

1

1/
∑

i var[Xi]

)

1

var[Xi]
.

Note that in approach (i), the weight is the population variance, whereas in approach (ii)
the weight is the sample variance.
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